import torch
import cv2
import RPi.GPIO as GPIO
import time
# ========== GPIO 설정 ==========
MOTOR_PIN = 18
GPIO.setmode(GPIO.BCM)
GPIO.setup(MOTOR_PIN, GPIO.OUT)
def stop_car():
GPIO.output(MOTOR_PIN, GPIO.LOW)
def move_car():
GPIO.output(MOTOR_PIN, GPIO.HIGH)
# ========== 모델 로드 (사전학습된 YOLOv5n) ==========
model = torch.hub.load('ultralytics/yolov5', 'yolov5n', pretrained=True)
model.conf = 0.5 # 신뢰도 임계값
# ========== 카메라 설정 ==========
cap = cv2.VideoCapture(0)
try:
while True:
ret, frame = cap.read()
if not ret:
break
results = model(frame)
labels = results.pandas().xyxy[0]['name'].tolist()
# 조건: 사람 or 차량이 있으면 정지
if any(obj in labels for obj in ['person', 'car', 'truck', 'bus']):
print(f"🛑 객체 감지됨: {labels} → 정지")
stop_car()
else:
print("✅ 도로에 장애물 없음 → 직진")
move_car()
# 화면 출력
annotated = results.render()[0]
cv2.imshow("Object Detection", annotated)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
finally:
cap.release()
cv2.destroyAllWindows()
GPIO.cleanup()